
Deep Learning
for NLP

More on Recurrence
May 06, 2016

Alexander Koller
Sebastian Stober

*with figures from deeplearningbook.org

Deep Learning
for NLP Convolution

2016-­04-­29Convolution & Recurrence 2

[Y. Bengio and Y. Lecun, 1995]

INPUT
28x28

feature maps
4@24x24

feature maps
4@12x12

feature maps
12@8x8

feature maps
12@4x4

OUTPUT
26@1x1

Subsampling

Convolution

Convolution

Subsampling

Convolution

Deep Learning
for NLP

• process sequential data
• capture history of inputs/states
• share parameters through a very deep
computational graph
– output is a function of the previous output
– produced using the same update rule applied to
the previous outputs.

• different from convolution across time steps

Convolution & Recurrence 3

Recurrence: Motivation

Deep Learning
for NLP

2016-­04-­29Convolution & Recurrence 4

The general idea

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of Sec. , we can10.1
design a wide variety of recurrent neural networks.

UU

VV

WW

o(t−1)o(t−1)

hh

oo

yy

LL

xx

o()to()t o(+1)to(+1)t

L(t−1)L(t−1) L()tL()t L(+1)tL(+1)t

y(t−1)y(t−1) y()ty()t y(+1)ty(+1)t

h(t−1)h(t−1) h()th()t h(+1)th(+1)t

x(t−1)x(t−1) x()tx()t x(+1)tx(+1)t

WWWW WW WW

h()...h()... h()...h()...

VV VV VV

UU UU UU

Unfold

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y . When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y . The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Eq. defines forward propagation in this model.10.8 (Left) The RNN
and its loss drawn with recurrent connections. (Right) The same seen as an time-unfolded
computational graph, where each node is now associated with one particular time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

• Recurrent networks that produce an output at each time step and have

378

Deep Learning
for NLP

• computational graph includes cycles
(recursion)

• represent influence of the present value of a
variable on its own value at future time steps

• unfolding to yield a graph that does not
involve recurrence
=> gets very deep very quickly

2016-­04-­29Convolution & Recurrence 5

Cyclic Connections

Deep Learning
for NLP

1. regardless of the sequence length, the
learned model always has the same input
dimensionality

2. can use the same transition function f with
the same parameters at every time step

2016-­04-­29Convolution & Recurrence 6

Unfolding

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.

Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially

any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use Eq. or a similar equation to define10.5

the values of their hidden units. To indicate that the state is the hidden units of

the network, we now rewrite Eq. using the variable to represent the state:10.4 h

h()t = (f h(1)t− ,x()t ;)θ , (10.5)

illustrated in Fig. , typical RNNs will add extra architectural features such as10.2

output layers that read information out of the state to make predictions.h

When the recurrent network is trained to perform a task that requires predicting

the future from the past, the network typically learns to use h()t
as a kind of lossy

summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence

(x()t ,x(1)t− ,x(2)t− , . . . ,x(2),x(1)) to a fixed length vector h()t . Depending on the

training criterion, this summary might selectively keep some aspects of the past

sequence with more precision than other aspects. For example, if the RNN is used

in statistical language modeling, typically to predict the next word given previous

words, it may not be necessary to store all of the information in the input sequence

up to time t, but rather only enough information to predict the rest of the sentence.

The most demanding situation is when we ask h()t to be rich enough to allow

one to approximately recover the input sequence, as in autoencoder frameworks

(Chapter).14

ff

hh

xx

h(t−1)h(t−1) h()th()t h(+1)th(+1)t

x(t−1)x(t−1) x()tx()t x(+1)tx(+1)t

h()...h()... h()...h()...

ff

Unfold

ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left) Circuit diagram. The black square indicates a delay of 1 time step.
(Right) The same network seen as an unfolded computational graph, where each node is
now associated with one particular time instance.

Eq. can be drawn in two different ways. One way to draw the RNN is10.5

with a diagram containing one node for every component that might exist in a

376

Deep Learning
for NLP

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.

Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially

any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use Eq. or a similar equation to define10.5

the values of their hidden units. To indicate that the state is the hidden units of

the network, we now rewrite Eq. using the variable to represent the state:10.4 h

h()t = (f h(1)t− ,x()t ;)θ , (10.5)

illustrated in Fig. , typical RNNs will add extra architectural features such as10.2

output layers that read information out of the state to make predictions.h

When the recurrent network is trained to perform a task that requires predicting

the future from the past, the network typically learns to use h()t
as a kind of lossy

summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence

(x()t ,x(1)t− ,x(2)t− , . . . ,x(2),x(1)) to a fixed length vector h()t . Depending on the

training criterion, this summary might selectively keep some aspects of the past

sequence with more precision than other aspects. For example, if the RNN is used

in statistical language modeling, typically to predict the next word given previous

words, it may not be necessary to store all of the information in the input sequence

up to time t, but rather only enough information to predict the rest of the sentence.

The most demanding situation is when we ask h()t to be rich enough to allow

one to approximately recover the input sequence, as in autoencoder frameworks

(Chapter).14

ff

hh

xx

h(t−1)h(t−1) h()th()t h(+1)th(+1)t

x(t−1)x(t−1) x()tx()t x(+1)tx(+1)t

h()...h()... h()...h()...

ff

Unfold

ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left) Circuit diagram. The black square indicates a delay of 1 time step.
(Right) The same network seen as an unfolded computational graph, where each node is
now associated with one particular time instance.

Eq. can be drawn in two different ways. One way to draw the RNN is10.5

with a diagram containing one node for every component that might exist in a

376

• gradient computation for unfolded loss
function w.r.t parameters very expensive

• O(T) where T is history length
• no parallelization (sequential dependence)

2016-­04-­29Convolution & Recurrence 7

Back-­Propagation
Through Time (BPTT)

Deep Learning
for NLP

• h(t) as a kind of “lossy summary” of the task-­
relevant aspects of the history up to t
– lossy compression necessary
– selectivity based on training criterion (cost)

• most demanding situation: rich enough
representation h(t) to allow approximate
recovery of input sequences (autoencoder)

2016-­04-­29Convolution & Recurrence 8

Hidden State

Deep Learning
for NLP

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

recurrence, it requires that the output units capture all of the information about
the past that the network will use to predict the future. Because the output units
are explicitly trained to match the training set targets, they are unlikely to capture
the necessary information about the past history of the input, unless the user
knows how to describe the full state of the system and provides it as part of the
training set targets. The advantage of eliminating hidden-to-hidden recurrence
is that, for any loss function based on comparing the prediction at time t to the
training target at time t, all the time steps are decoupled. Training can thus be
parallelized, with the gradient for each step t computed in isolation. There is no
need to compute the output for the previous time step first, because the training
set provides the ideal value of that output.

h(t−1)h(t−1)

W
h()th()t

x(t−1)x(t−1) x()tx()t x()...x()...

W W

U U U

h()τh()τ

x()τx()τ

W

U

o()τo()τy()τy()τ

L()τL()τ

V

.

Figure 10.5: Time-unfolded recurrent neural network with a single output at the end
of the sequence. Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There might be a target
right at the end (as depicted here) or the gradient on the output o()t can be obtained by
back-propagating from further downstream modules.

Models that have recurrent connections from their outputs leading back into
the model may be trained with teacher forcing. Teacher forcing is a procedure
that emerges from the maximum likelihood criterion, in which during training the
model receives the ground truth output y()t as input at time t + 1. We can see
this by examining a sequence with two time steps. The conditional maximum

likelihood criterion is

log p

y (1),y(2) | x(1),x(2)


(10.15)

382

Output for entire sequence

2016-­04-­29Convolution & Recurrence 9

Deep Learning
for NLP Output at every step

2016-­04-­29Convolution & Recurrence 10

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of Sec. , we can10.1
design a wide variety of recurrent neural networks.

UU

VV

WW

o(t−1)o(t−1)

hh

oo

yy

LL

xx

o()to()t o(+1)to(+1)t

L(t−1)L(t−1) L()tL()t L(+1)tL(+1)t

y(t−1)y(t−1) y()ty()t y(+1)ty(+1)t

h(t−1)h(t−1) h()th()t h(+1)th(+1)t

x(t−1)x(t−1) x()tx()t x(+1)tx(+1)t

WWWW WW WW

h()...h()... h()...h()...

VV VV VV

UU UU UU

Unfold

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y . When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y . The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Eq. defines forward propagation in this model.10.8 (Left) The RNN
and its loss drawn with recurrent connections. (Right) The same seen as an time-unfolded
computational graph, where each node is now associated with one particular time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

• Recurrent networks that produce an output at each time step and have

378

Such a recurrent network of with finite size can compute
any function computable by a Turing machine.

Deep Learning
for NLP Bi-­Directional RNN

• h(t) relevant summary
of past (forward)

• g(t) relevant summary
of future (backward)

• extendable to 2D
inputs

• restriction: same-­
length sequences

2016-­04-­29Convolution & Recurrence 11

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

conditional distribution P(y(1), . . . ,y()τ | x(1) , . . . ,x()τ) that makes a conditional
independence assumption that this distribution factorizes as



t

P (y ()t | x(1) , . . . ,x()t). (10.35)

To remove the conditional independence assumption, we can add connections from
the output at time t to the hidden unit at time t+ 1, as shown in Fig. . The10.10
model can then represent arbitrary probability distributions over the y sequence.
This kind of model representing a distribution over a sequence given another
sequence still has one restriction, which is that the length of both sequences must
be the same. We describe how to remove this restriction in Sec. .10.4

o(t−1)o(t−1) o()to()t o(+1)to(+1)t

L(t−1)L(t−1) L()tL()t L(+1)tL(+1)t

y(t−1)y(t−1) y()ty()t y (+1)ty (+1)t

h(t−1)h(t−1) h()th()t h(+1)th(+1)t

x(t−1)x(t−1) x()tx()t x (+1)tx (+1)t

g (t−1)g (t−1) g ()tg ()t g (+1)tg (+1)t

Figure 10.11: Computation of a typical bidirectional recurrent neural network, meant
to learn to map input sequences x to target sequences y , with loss L()t at each step t.
The h recurrence propagates information forward in time (towards the right) while the
g recurrence propagates information backward in time (towards the left). Thus at each
point t , the output units o()t can benefit from a relevant summary of the past in its h()t

input and from a relevant summary of the future in its g()t input.

394

Deep Learning
for NLP Image labeling

2016-­04-­29Convolution & Recurrence 12

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

o(t−1)o(t−1) o()to()t o(+1)to(+1)t

L(t−1)L(t−1) L()tL()t L(+1)tL(+1)t

y(t−1)y(t−1) y()ty()t y(+1)ty(+1)t

h(t−1)h(t−1) h()th()t h(+1)th(+1)t
WW W W

s()...s()...
h()...h()...

V V V

U U U

xx

y()...y()...

R R R R R

Figure 10.9: An RNN that maps a fixed-length vector x into a distribution over sequences
Y. This RNN is appropriate for tasks such as image captioning, where a single image is
used as input to a model that then produces a sequence of words describing the image.
Each element y()t of the observed output sequence serves both as input (for the current
time step) and, during training, as target (for the previous time step).

392

image (2D)

caption (word sequence)

Deep Learning
for NLP

Encoder-­Decoder
Sequence-­to-­Sequence

• encoder (reader)
– read input sequence
– generate hidden state

• decoder (writer)
– generate output
sequence from
hidden state

• variable length

2016-­04-­29Convolution & Recurrence 13

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

Encoder

…

x(1)x(1) x(2)x(2) x()...x()... x(n x)x(n x)

Decoder

…

y(1)y(1) y(2)y(2) y()...y()... y(n y)y(n y)

CC

Figure 10.12: Example of an encoder-decoder or sequence-to-sequence RNN architecture,
for learning to generate an output sequence (y(1), . . . ,y(n y)) given an input sequence
(x(1) ,x(2) , . . . ,x(nx)). It is composed of an encoder RNN that reads the input sequence
and a decoder RNN that generates the output sequence (or computes the probability of a
given output sequence). The final hidden state of the encoder RNN is used to compute a
generally fixed-size context variable C which represents a semantic summary of the input
sequence and is given as input to the decoder RNN.

397

Deep Learning
for NLP Recursive NNs

2016-­04-­29Convolution & Recurrence 14

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

x (1)x (1) x(2)x(2) x(3)x(3)

V V V

yy

LL

x(4)x(4)

V

oo

U W U W

U
W

Figure 10.14: A recursive network has a computational graph that generalizes that of the
recurrent network from a chain to a tree. A variable-size sequence x(1),x(2) , . . . ,x()t can
be mapped to a fixed-size representation (the output o), with a fixed set of parameters
(the weight matrices U , V , W). The figure illustrates a supervised learning case in which
some target is provided which is associated with the whole sequence.y

401

Deep Learning
for NLP

• Training can be slower than for feedforward
or convolutional networks.

• Vanishing/exploding gradients.

• Difficulties in learning to use hidden state to
remember information about the distant
past.
– Extremely important in NLP!

2016-­04-­29Convolution & Recurrence 15

RNNs: Challenges

Deep Learning
for NLP Gradient Clipping

2016-­04-­29Convolution & Recurrence 16

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS



























Figure 10.17: Example of the effect of gradient clipping in a recurrent network with
two parameters w and b. Gradient clipping can make gradient descent perform more
reasonably in the vicinity of extremely steep cliffs. These steep cliffs commonly occur
in recurrent networks near where a recurrent network behaves approximately linearly.
The cliff is exponentially steep in the number of time steps because the weight matrix
is multiplied by itself once for each time step. (Left) Gradient descent without gradient
clipping overshoots the bottom of this small ravine, then receives a very large gradient
from the cliff face. The large gradient catastrophically propels the parameters outside the
axes of the plot. (Right) Gradient descent with gradient clipping has a more moderate
reaction to the cliff. While it does ascend the cliff face, the step size is restricted so that
it cannot be propelled away from steep region near the solution. Figure adapted with
permission from Pascanu 2013aet al. ().

A simple type of solution has been in use by practitioners for many years:

clipping the gradient. There are different instances of this idea (Mikolov 2012, ;

Pascanu 2013aet al.,). One option is to clip the parameter gradient from a

minibatch (element-wise Mikolov 2012,) just before the parameter update. Another

is to clip the norm || ||g of the gradient g (Pascanu 2013aet al.,) just before the

parameter update:

if || ||g > v (10.48)

g ←
gv

|| ||g
(10.49)

where v is the norm threshold and g is used to update parameters. Because the

gradient of all the parameters (including different groups of parameters, such as

weights and biases) is renormalized jointly with a single scaling factor, the latter

method has the advantage that it guarantees that each step is still in the gradient

direction, but experiments suggest that both forms work similarly. Although

416

Deep Learning
for NLP LSTMs

2016-­04-­29Convolution & Recurrence 17

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Figure 10.16: Block diagram of the LSTM recurrent network “cell.” Cells are connected
recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.
An input feature is computed with a regular artificial neuron unit. Its value can be
accumulated into the state if the sigmoidal input gate allows it. The state unit has a
linear self-loop whose weight is controlled by the forget gate. The output of the cell can
be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the
input unit can have any squashing nonlinearity. The state unit can also be used as an
extra input to the gating units. The black square indicates a delay of 1 time unit.

412

Long Short-­Term Memory;; Hochreiter & Schmidhuber 97

Deep Learning
for NLP GRUs

2016-­04-­29Convolution & Recurrence 18

Gated Recurrent Units;; Cho et al. 2014

Deep Learning
for NLP

• Recurrent neural networks extremely useful
for modeling natural language.

• Special challenges that need to be
overcome.

• Many possible solutions available;; try them!

2016-­04-­29Convolution & Recurrence 19

Conclusion

