
Deep Learning 
for NLP

More  on  Recurrence
May  06,  2016

Alexander  Koller
Sebastian  Stober

*with  figures  from  deeplearningbook.org



Deep Learning 
for NLP Convolution

2016-­04-­29Convolution  &  Recurrence 2

[Y.  Bengio and  Y.  Lecun,  1995]

INPUT 
28x28

feature maps 
4@24x24

feature maps
4@12x12

feature maps
12@8x8

feature maps
12@4x4

OUTPUT
26@1x1

Subsampling

Convolution

Convolution

Subsampling

Convolution



Deep Learning 
for NLP

• process  sequential  data
• capture  history  of  inputs/states
• share  parameters  through  a  very  deep  
computational  graph
– output  is  a  function  of  the  previous  output
– produced  using  the  same  update  rule  applied  to  
the  previous  outputs.

• different  from  convolution  across  time  steps

Convolution  &  Recurrence 3

Recurrence:  Motivation
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The  general  idea

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of Sec. , we can10.1
design a wide variety of recurrent neural networks.
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Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y . When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y . The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Eq. defines forward propagation in this model.10.8 (Left) The RNN
and its loss drawn with recurrent connections. (Right) The same seen as an time-unfolded
computational graph, where each node is now associated with one particular time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

• Recurrent networks that produce an output at each time step and have
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• computational  graph  includes  cycles  
(recursion)

• represent  influence  of  the  present  value  of  a  
variable  on  its  own  value  at  future  time  steps

• unfolding  to  yield  a  graph  that  does  not  
involve  recurrence  
=>  gets  very  deep  very  quickly

2016-­04-­29Convolution  &  Recurrence 5

Cyclic  Connections
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1. regardless  of  the  sequence  length,  the  
learned  model  always  has  the  same  input  
dimensionality

2. can  use  the  same  transition  function  f  with  
the  same  parameters  at  every  time  step

2016-­04-­29Convolution  &  Recurrence 6

Unfolding

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.

Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially

any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use Eq. or a similar equation to define10.5

the values of their hidden units. To indicate that the state is the hidden units of

the network, we now rewrite Eq. using the variable to represent the state:10.4 h

h( )t = (f h( 1)t− ,x( )t ; )θ , (10.5)

illustrated in Fig. , typical RNNs will add extra architectural features such as10.2

output layers that read information out of the state to make predictions.h

When the recurrent network is trained to perform a task that requires predicting

the future from the past, the network typically learns to use h( )t
as a kind of lossy

summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence

(x( )t ,x( 1)t− ,x( 2)t− , . . . ,x(2),x(1)) to a fixed length vector h( )t . Depending on the

training criterion, this summary might selectively keep some aspects of the past

sequence with more precision than other aspects. For example, if the RNN is used

in statistical language modeling, typically to predict the next word given previous

words, it may not be necessary to store all of the information in the input sequence

up to time t, but rather only enough information to predict the rest of the sentence.

The most demanding situation is when we ask h( )t to be rich enough to allow

one to approximately recover the input sequence, as in autoencoder frameworks

(Chapter ).14
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Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left) Circuit diagram. The black square indicates a delay of 1 time step.
(Right) The same network seen as an unfolded computational graph, where each node is
now associated with one particular time instance.

Eq. can be drawn in two different ways. One way to draw the RNN is10.5

with a diagram containing one node for every component that might exist in a
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CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.

Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially

any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use Eq. or a similar equation to define10.5

the values of their hidden units. To indicate that the state is the hidden units of

the network, we now rewrite Eq. using the variable to represent the state:10.4 h

h( )t = (f h( 1)t− ,x( )t ; )θ , (10.5)

illustrated in Fig. , typical RNNs will add extra architectural features such as10.2

output layers that read information out of the state to make predictions.h

When the recurrent network is trained to perform a task that requires predicting

the future from the past, the network typically learns to use h( )t
as a kind of lossy

summary of the task-relevant aspects of the past sequence of inputs up to t. This
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Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left) Circuit diagram. The black square indicates a delay of 1 time step.
(Right) The same network seen as an unfolded computational graph, where each node is
now associated with one particular time instance.

Eq. can be drawn in two different ways. One way to draw the RNN is10.5

with a diagram containing one node for every component that might exist in a
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• gradient  computation  for  unfolded  loss  
function  w.r.t parameters  very  expensive

• O(T)  where  T  is  history  length
• no  parallelization  (sequential  dependence)

2016-­04-­29Convolution  &  Recurrence 7

Back-­Propagation  
Through  Time  (BPTT)
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• h(t)  as  a  kind  of  “lossy summary”  of  the  task-­
relevant  aspects  of  the  history  up  to  t
– lossy compression  necessary
– selectivity  based  on  training  criterion  (cost)

• most  demanding  situation:  rich  enough  
representation  h(t)  to  allow  approximate  
recovery  of  input  sequences  (autoencoder)

2016-­04-­29Convolution  &  Recurrence 8

Hidden  State
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CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

recurrence, it requires that the output units capture all of the information about
the past that the network will use to predict the future. Because the output units
are explicitly trained to match the training set targets, they are unlikely to capture
the necessary information about the past history of the input, unless the user
knows how to describe the full state of the system and provides it as part of the
training set targets. The advantage of eliminating hidden-to-hidden recurrence
is that, for any loss function based on comparing the prediction at time t to the
training target at time t, all the time steps are decoupled. Training can thus be
parallelized, with the gradient for each step t computed in isolation. There is no
need to compute the output for the previous time step first, because the training
set provides the ideal value of that output.
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Figure 10.5: Time-unfolded recurrent neural network with a single output at the end
of the sequence. Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing. There might be a target
right at the end (as depicted here) or the gradient on the output o( )t can be obtained by
back-propagating from further downstream modules.

Models that have recurrent connections from their outputs leading back into
the model may be trained with teacher forcing. Teacher forcing is a procedure
that emerges from the maximum likelihood criterion, in which during training the
model receives the ground truth output y( )t as input at time t + 1. We can see
this by examining a sequence with two time steps. The conditional maximum

likelihood criterion is

log p

y (1),y(2) | x(1),x(2)


(10.15)

382

Output  for  entire  sequence

2016-­04-­29Convolution  &  Recurrence 9
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CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of Sec. , we can10.1
design a wide variety of recurrent neural networks.
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Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y . When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y . The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Eq. defines forward propagation in this model.10.8 (Left) The RNN
and its loss drawn with recurrent connections. (Right) The same seen as an time-unfolded
computational graph, where each node is now associated with one particular time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

• Recurrent networks that produce an output at each time step and have
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Such  a  recurrent  network  of  with  finite  size  can  compute  
any  function  computable  by  a  Turing  machine.
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for NLP Bi-­Directional  RNN

• h(t)  relevant  summary  
of  past  (forward)

• g(t)  relevant  summary  
of  future  (backward)

• extendable  to  2D  
inputs

• restriction:  same-­
length  sequences

2016-­04-­29Convolution  &  Recurrence 11

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

conditional distribution P(y(1), . . . ,y( )τ | x(1) , . . . ,x( )τ ) that makes a conditional
independence assumption that this distribution factorizes as



t

P (y ( )t | x(1) , . . . ,x( )t ). (10.35)

To remove the conditional independence assumption, we can add connections from
the output at time t to the hidden unit at time t+ 1, as shown in Fig. . The10.10
model can then represent arbitrary probability distributions over the y sequence.
This kind of model representing a distribution over a sequence given another
sequence still has one restriction, which is that the length of both sequences must
be the same. We describe how to remove this restriction in Sec. .10.4
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Figure 10.11: Computation of a typical bidirectional recurrent neural network, meant
to learn to map input sequences x to target sequences y , with loss L( )t at each step t.
The h recurrence propagates information forward in time (towards the right) while the
g recurrence propagates information backward in time (towards the left). Thus at each
point t , the output units o( )t can benefit from a relevant summary of the past in its h( )t

input and from a relevant summary of the future in its g( )t input.
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CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS
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Figure 10.9: An RNN that maps a fixed-length vector x into a distribution over sequences
Y. This RNN is appropriate for tasks such as image captioning, where a single image is
used as input to a model that then produces a sequence of words describing the image.
Each element y( )t of the observed output sequence serves both as input (for the current
time step) and, during training, as target (for the previous time step).
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Encoder-­Decoder  
Sequence-­to-­Sequence

• encoder  (reader)
– read  input  sequence
– generate  hidden  state

• decoder  (writer)
– generate  output  
sequence  from  
hidden  state

• variable  length

2016-­04-­29Convolution  &  Recurrence 13

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

Encoder

…

x(1)x(1) x(2)x(2) x( )...x( )... x(n x)x(n x)

Decoder

…

y(1)y(1) y(2)y(2) y( )...y( )... y(n y )y(n y )

CC

Figure 10.12: Example of an encoder-decoder or sequence-to-sequence RNN architecture,
for learning to generate an output sequence (y(1), . . . ,y(n y)) given an input sequence
(x(1) ,x(2) , . . . ,x(nx) ). It is composed of an encoder RNN that reads the input sequence
and a decoder RNN that generates the output sequence (or computes the probability of a
given output sequence). The final hidden state of the encoder RNN is used to compute a
generally fixed-size context variable C which represents a semantic summary of the input
sequence and is given as input to the decoder RNN.

397



Deep Learning 
for NLP Recursive  NNs

2016-­04-­29Convolution  &  Recurrence 14

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS
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Figure 10.14: A recursive network has a computational graph that generalizes that of the
recurrent network from a chain to a tree. A variable-size sequence x(1),x(2) , . . . ,x( )t can
be mapped to a fixed-size representation (the output o), with a fixed set of parameters
(the weight matrices U , V , W ). The figure illustrates a supervised learning case in which
some target is provided which is associated with the whole sequence.y
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• Training  can  be  slower  than  for  feedforward
or  convolutional  networks.

• Vanishing/exploding  gradients.

• Difficulties  in  learning  to  use  hidden  state  to  
remember  information  about  the  distant  
past.
– Extremely  important  in  NLP!

2016-­04-­29Convolution  &  Recurrence 15

RNNs:  Challenges
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CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS
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Figure 10.17: Example of the effect of gradient clipping in a recurrent network with
two parameters w and b. Gradient clipping can make gradient descent perform more
reasonably in the vicinity of extremely steep cliffs. These steep cliffs commonly occur
in recurrent networks near where a recurrent network behaves approximately linearly.
The cliff is exponentially steep in the number of time steps because the weight matrix
is multiplied by itself once for each time step. (Left) Gradient descent without gradient
clipping overshoots the bottom of this small ravine, then receives a very large gradient
from the cliff face. The large gradient catastrophically propels the parameters outside the
axes of the plot. (Right) Gradient descent with gradient clipping has a more moderate
reaction to the cliff. While it does ascend the cliff face, the step size is restricted so that
it cannot be propelled away from steep region near the solution. Figure adapted with
permission from Pascanu 2013aet al. ( ).

A simple type of solution has been in use by practitioners for many years:

clipping the gradient. There are different instances of this idea (Mikolov 2012, ;

Pascanu 2013aet al., ). One option is to clip the parameter gradient from a

minibatch (element-wise Mikolov 2012, ) just before the parameter update. Another

is to clip the norm || ||g of the gradient g (Pascanu 2013aet al., ) just before the

parameter update:

if || ||g > v (10.48)

g ←
gv

|| ||g
(10.49)

where v is the norm threshold and g is used to update parameters. Because the

gradient of all the parameters (including different groups of parameters, such as

weights and biases) is renormalized jointly with a single scaling factor, the latter

method has the advantage that it guarantees that each step is still in the gradient

direction, but experiments suggest that both forms work similarly. Although
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×

input input gate forget gate output gate

output

state
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+ ×

Figure 10.16: Block diagram of the LSTM recurrent network “cell.” Cells are connected
recurrently to each other, replacing the usual hidden units of ordinary recurrent networks.
An input feature is computed with a regular artificial neuron unit. Its value can be
accumulated into the state if the sigmoidal input gate allows it. The state unit has a
linear self-loop whose weight is controlled by the forget gate. The output of the cell can
be shut off by the output gate. All the gating units have a sigmoid nonlinearity, while the
input unit can have any squashing nonlinearity. The state unit can also be used as an
extra input to the gating units. The black square indicates a delay of 1 time unit.
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Long  Short-­Term  Memory;;  Hochreiter &  Schmidhuber 97



Deep Learning 
for NLP GRUs

2016-­04-­29Convolution  &  Recurrence 18

Gated  Recurrent  Units;;  Cho  et  al.  2014
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• Recurrent  neural  networks  extremely  useful  
for  modeling  natural  language.

• Special  challenges  that  need  to  be  
overcome.

• Many  possible  solutions  available;;  try  them!

2016-­04-­29Convolution  &  Recurrence 19

Conclusion


