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- @y Convolution

Jam
INPUT feature maps feature maps  feature maps feature maps OUTPUT
28x28 4@24x24 4@12x12 12@8x8 12@4x4 26@1x1

[Y. Bengio and Y. Lecun, 1995]
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- @ Recurrence: Motivation
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* process sequential data
 capture history of inputs/states

* share parameters through a very deep
computational graph
— output is a function of the previous output

— produced using the same update rule applied to
the previous outputs.

* different from convolution across time steps
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5, @ The general idea
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Unfold
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3, ™ Cyclic Connections

* computational graph includes cycles
(recursion)

* represent influence of the present value of a
variable on its own value at future time steps

 unfolding to yield a graph that does not
involve recurrence

=> gets very deep very quickly
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- @ Unfolding
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1. regardless of the sequence length, the
learned model always has the same input
dimensionality

2. can use the same transition function f with
the same parameters at every time step
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Through Time (BPTT)
S

 gradient computation for unfolded loss
function w.r.t parameters very expensive

* O(T)where T is history length
* no parallelization (sequential dependence)
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-, @ Hidden State

dm
[ ]
L]

* h(t) as a kind of “lossy summary” of the task-
relevant aspects of the history up to t
— lossy compression necessary
— selectivity based on training criterion (cost)

* most demanding situation: rich enough
representation h(t) to allow approximate
recovery of input sequences (autoencoder)
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3 g e Output for entire sequence
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Such a recurrent network of with finite size can compute
any function computable by a Turing machine.
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Convolution & Recurrence

* h(t) relevant summary

of past (forward)

e g(t) relevant summary

of future (backward)

 extendableto 2D

iInputs

e restriction: same-

length sequences
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-, @ Image labeling
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image (2D)
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 Encoder-Decoder

m Deep Learning
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* encoder (reader)

— read input sequence
— generate hidden state

» decoder (writer)

— generate output
sequence from
hidden state

 variable length
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ncoder
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g2 Recursive NNs
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5 ms RNNs: Challenges
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* Training can be slower than for feedforward
or convolutional networks.

 Vanishing/exploding gradients.

* Difficulties in learning to use hidden state to
remember information about the distant
past.

— Extremely important in NLP!
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5, @ Gradient Clipping
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output

self-loop

forget gate output gate

input gate

Long Short-Term Memory; Hochreiter & Schmidhuber 97
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(a) Long Short-Term Memory (b) Gated Recurrent Unit

Figure 1: Illustration of (a) LSTM and (b) gated recurrent units. (a) ¢, f and o are the input, forget
and output gates, respectively. ¢ and ¢ denote the memory cell and the new memory cell content. (b)
r and z are the reset and update gates, and h and h are the activation and the candidate activation.

Gated Recurrent Units; Cho et al. 2014
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-, @ Conclusion
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* Recurrent neural networks extremely useful
for modeling natural language.

» Special challenges that need to be
overcome.

* Many possible solutions available; try them!
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