
Deep Learning
for NLP

Convolution
& Recurrence
April 29, 2016

Sebastian Stober <sstober@uni-potsdam.de>

*with figures from deeplearningbook.org

Deep Learning
for NLP

Convolution

2016-04-29Convolution & Recurrence 2

Deep Learning
for NLP Sparse Connectivity

2016-04-29Convolution & Recurrence 3

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3, and
also highlight the output units in s that are affected by this unit. (Top) When s is formed
by convolution with a kernel of width , only three outputs are affected by3 x. (Bottom)
When s is formed by matrix multiplication, connectivity is no longer sparse, so all of the
outputs are affected by x3.

336

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3, and
also highlight the input units in x that affect this unit. These units are known as the
receptive field of s3. (Top) When s is formed by convolution with a kernel of width , only3
three inputs affect s3. When(Bottom) s is formed by matrix multiplication, connectivity
is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (Fig.) or pooling9.12
(Sec.). This means that even though9.3 direct connections in a convolutional net are very
sparse, units in the deeper layers can be indirectly connected to all or most of the input
image.

337

from below from above

convolution
fully connected

Deep Learning
for NLP Receptive Field

2016-04-29Convolution & Recurrence 4

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3, and
also highlight the input units in x that affect this unit. These units are known as the
receptive field of s3. (Top) When s is formed by convolution with a kernel of width , only3
three inputs affect s3. When(Bottom) s is formed by matrix multiplication, connectivity
is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (Fig.) or pooling9.12
(Sec.). This means that even though9.3 direct connections in a convolutional net are very
sparse, units in the deeper layers can be indirectly connected to all or most of the input
image.

337

Deep Learning
for NLP Parameter Sharing

2016-04-29Convolution & Recurrence 5

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top) The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. The single black arrow indicates(Bottom)
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

only one set. This does not affect the runtime of forward propagation—it is still
O(k n×)—but it does further reduce the storage requirements of the model to
k parameters. Recall that k is usually several orders of magnitude less than m.
Since m and n are usually roughly the same size, k is practically insignificant
compared to m n× . Convolution is thus dramatically more efficient than dense
matrix multiplication in terms of the memory requirements and statistical efficiency.

For a graphical depiction of how parameter sharing works, see Fig. .9.5

As an example of both of these first two principles in action, Fig. shows how9.6
sparse connectivity and parameter sharing can dramatically improve the efficiency
of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f (g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function
mapping one image function to another image function, such that I = g(I) is

338

convolution

fully connected

Deep Learning
for NLP Convolution & Pooling

2016-04-29Convolution & Recurrence 6

convolved
feature

pooled
feature

[http://ufldl.stanford.edu/wiki/i]

2D input
convolved

feature
non-linearity

Deep Learning
for NLP

• convolution
– equivariance: if the input changes, the output

changes in the same way
• pooling

– approximate invariance to small translations
– trade-off: whether? vs. where?
– special case: maxout-pooling (pooling over

several filters => learn invariance)

2016-04-29Convolution & Recurrence 7

Convolution & Pooling

Deep Learning
for NLP

Complex vs. Simple
Layer Structure

2016-04-29 8

CHAPTER 9. CONVOLUTIONAL NETWORKS

Convolutional Layer

Input to layer

Convolution stage:

A ne transformffi

Detector stage:

Nonlinearity

e.g., rectified linear

Pooling stage

Next layer

Input to layers

Convolution layer:

A ne transform ffi

Detector layer: Nonlinearity

e.g., rectified linear

Pooling layer

Next layer

Complex layer terminology Simple layer terminology

Figure 9.7: The components of a typical convolutional neural network layer. There are two
commonly used sets of terminology for describing these layers. (Left) In this terminology,
the convolutional net is viewed as a small number of relatively complex layers, with each
layer having many “stages.” In this terminology, there is a one-to-one mapping between
kernel tensors and network layers. In this book we generally use this terminology. (Right)
In this terminology, the convolutional net is viewed as a larger number of simple layers;
every step of processing is regarded as a layer in its own right. This means that not every
“layer” has parameters.

341

Convolution & Recurrence

Deep Learning
for NLP CNN (simple layers)

2016-04-29Convolution & Recurrence 9

[Y. Bengio and Y. Lecun, 1995]

INPUT
28x28

feature maps
4@24x24

feature maps
4@12x12

feature maps
12@8x8

feature maps
12@4x4

OUTPUT
26@1x1

Subsampling

Convolution

Convolution

Subsampling

Convolution

Deep Learning
for NLP CNN (complex layers)

2016-04-29Convolution & Recurrence 10

minimize classification errorlabel

convolutional
layer

classifier
input

2nd

convolutional
layer

label

• involves non-linear transform
(activation function) after conv.

• pool size controls amount of
invariance to input translations

• pool stride (step size) controls
non-linear sub-sampling

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

convolution
with 3x3 kernel

2x2 max-pooling
with stride 1x1

2D input convolved
feature

pooled
feature

1 0 1
0 1 0
1 0 1

4 3 4
2 4 3
2 3 4

4 4
4 4

Deep Learning
for NLP To Pad or Not to Pad?

2016-04-29Convolution & Recurrence 11

CHAPTER 9. CONVOLUTIONAL NETWORKS

... ...

...

... ...

... ...

... ...

Figure 9.13: The effect of zero padding on network size: Consider a convolutional network
with a kernel of width six at every layer. In this example, we do not use any pooling, so
only the convolution operation itself shrinks the network size. (Top) In this convolutional
network, we do not use any implicit zero padding. This causes the representation to
shrink by five pixels at each layer. Starting from an input of sixteen pixels, we are only
able to have three convolutional layers, and the last layer does not ever move the kernel,
so arguably only two of the layers are truly convolutional. The rate of shrinking can
be mitigated by using smaller kernels, but smaller kernels are less expressive and some
shrinking is inevitable in this kind of architecture. By adding five implicit zeroes(Bottom)
to each layer, we prevent the representation from shrinking with depth. This allows us to
make an arbitrarily deep convolutional network.

351

see convolution mode
in Blocks:
• valid
• same
• full

Deep Learning
for NLP

• reduces dimensionality

• stride > 1 for convolution
• down-sampling in combination with pooling

2016-04-29Convolution & Recurrence 12

Down-Sampling/Stride

Deep Learning
for NLP

• CNN = “fully connected net with an infinitely
strong prior [on weights]”

• only useful when the assumptions made by
the prior are reasonably accurate

• convolution+pooling can cause underfitting

2016-04-29Convolution & Recurrence 13

Strong Priors

Deep Learning
for NLP

Recurrence

2016-04-29Convolution & Recurrence 14

Deep Learning
for NLP

• process sequential data
• capture history of inputs/states
• share parameters through a very deep

computational graph
– output is a function of the previous output
– produced using the same update rule applied to

the previous outputs.
• different from convolution across time steps

2016-04-29Convolution & Recurrence 15

Motivation

Deep Learning
for NLP

• computational graph includes cycles
(recursion)

• represent influence of the present value of a
variable on its own value at future time steps

• unfolding to yield a graph that does not
involve recurrence
=> gets very deep very quickly

2016-04-29Convolution & Recurrence 16

Cyclic Connections

Deep Learning
for NLP

1. regardless of the sequence length, the
learned model always has the same input
dimensionality

2. can use the same transition function f with
the same parameters at every time step

2016-04-29Convolution & Recurrence 17

Unfolding

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.

Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially

any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use Eq. or a similar equation to define10.5

the values of their hidden units. To indicate that the state is the hidden units of

the network, we now rewrite Eq. using the variable to represent the state:10.4 h

h()t = (f h(1)t− ,x()t ;)θ , (10.5)

illustrated in Fig. , typical RNNs will add extra architectural features such as10.2

output layers that read information out of the state to make predictions.h

When the recurrent network is trained to perform a task that requires predicting

the future from the past, the network typically learns to use h()t
as a kind of lossy

summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence

(x()t ,x(1)t− ,x(2)t− , . . . ,x(2),x(1)) to a fixed length vector h()t . Depending on the

training criterion, this summary might selectively keep some aspects of the past

sequence with more precision than other aspects. For example, if the RNN is used

in statistical language modeling, typically to predict the next word given previous

words, it may not be necessary to store all of the information in the input sequence

up to time t, but rather only enough information to predict the rest of the sentence.

The most demanding situation is when we ask h()t to be rich enough to allow

one to approximately recover the input sequence, as in autoencoder frameworks

(Chapter).14

ff

hh

xx

h(t−1)h(t−1) h()th()t h(+1)th(+1)t

x(t−1)x(t−1) x()tx()t x(+1)tx(+1)t

h()...h()... h()...h()...

ff

Unfold

ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left) Circuit diagram. The black square indicates a delay of 1 time step.
(Right) The same network seen as an unfolded computational graph, where each node is
now associated with one particular time instance.

Eq. can be drawn in two different ways. One way to draw the RNN is10.5

with a diagram containing one node for every component that might exist in a

376

Deep Learning
for NLP

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

where we see that the state now contains information about the whole past sequence.

Recurrent neural networks can be built in many different ways. Much as

almost any function can be considered a feedforward neural network, essentially

any function involving recurrence can be considered a recurrent neural network.

Many recurrent neural networks use Eq. or a similar equation to define10.5

the values of their hidden units. To indicate that the state is the hidden units of

the network, we now rewrite Eq. using the variable to represent the state:10.4 h

h()t = (f h(1)t− ,x()t ;)θ , (10.5)

illustrated in Fig. , typical RNNs will add extra architectural features such as10.2

output layers that read information out of the state to make predictions.h

When the recurrent network is trained to perform a task that requires predicting

the future from the past, the network typically learns to use h()t
as a kind of lossy

summary of the task-relevant aspects of the past sequence of inputs up to t. This
summary is in general necessarily lossy, since it maps an arbitrary length sequence

(x()t ,x(1)t− ,x(2)t− , . . . ,x(2),x(1)) to a fixed length vector h()t . Depending on the

training criterion, this summary might selectively keep some aspects of the past

sequence with more precision than other aspects. For example, if the RNN is used

in statistical language modeling, typically to predict the next word given previous

words, it may not be necessary to store all of the information in the input sequence

up to time t, but rather only enough information to predict the rest of the sentence.

The most demanding situation is when we ask h()t to be rich enough to allow

one to approximately recover the input sequence, as in autoencoder frameworks

(Chapter).14

ff

hh

xx

h(t−1)h(t−1) h()th()t h(+1)th(+1)t

x(t−1)x(t−1) x()tx()t x(+1)tx(+1)t

h()...h()... h()...h()...

ff

Unfold

ff ff f

Figure 10.2: A recurrent network with no outputs. This recurrent network just processes
information from the input x by incorporating it into the state h that is passed forward
through time. (Left) Circuit diagram. The black square indicates a delay of 1 time step.
(Right) The same network seen as an unfolded computational graph, where each node is
now associated with one particular time instance.

Eq. can be drawn in two different ways. One way to draw the RNN is10.5

with a diagram containing one node for every component that might exist in a

376

• gradient computation for unfolded loss
function w.r.t parameters very expensive

• O(T) where T is history length
• no parallelization (sequential dependence)

2016-04-29Convolution & Recurrence 18

Back-Propagation
Through Time (BPTT)

Deep Learning
for NLP

• network now contains information about the
whole past sequence:
– inputs,
– states,
– outputs

2016-04-29Convolution & Recurrence 19

Dynamic System

Deep Learning
for NLP

• h(t) as a kind of “lossy summary” of the task-
relevant aspects of the history up to t
– lossy compression necessary
– selectivity based on training criterion (cost)

• most demanding situation: rich enough
representation h(t) to allow approximate
recovery of input sequences (autoencoder)

2016-04-29Convolution & Recurrence 20

Hidden State

Deep Learning
for NLP

1. output at each time step,
recurrent connections between hidden units

2. output at each time step
recurrent connections only from output at
one time step to hidden units at next step

3. single output for entire input sequence,
recurrent connections between hidden units

2016-04-29Convolution & Recurrence 21

Design Patterns

Deep Learning
for NLP

1. output at each time step,
rec. conn. between hidden units

2016-04-29Convolution & Recurrence 22

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS

information flow forward in time (computing outputs and losses) and backward
in time (computing gradients) by explicitly showing the path along which this
information flows.

10.2 Recurrent Neural Networks

Armed with the graph unrolling and parameter sharing ideas of Sec. , we can10.1
design a wide variety of recurrent neural networks.

UU

VV

WW

o(t−1)o(t−1)

hh

oo

yy

LL

xx

o()to()t o(+1)to(+1)t

L(t−1)L(t−1) L()tL()t L(+1)tL(+1)t

y(t−1)y(t−1) y()ty()t y(+1)ty(+1)t

h(t−1)h(t−1) h()th()t h(+1)th(+1)t

x(t−1)x(t−1) x()tx()t x(+1)tx(+1)t

WWWW WW WW

h()...h()... h()...h()...

VV VV VV

UU UU UU

Unfold

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of x values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target y . When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes ŷ = softmax(o) and compares this to the target y . The RNN has input to hidden
connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections
parametrized by a weight matrix W , and hidden-to-output connections parametrized by
a weight matrix V . Eq. defines forward propagation in this model.10.8 (Left) The RNN
and its loss drawn with recurrent connections. (Right) The same seen as an time-unfolded
computational graph, where each node is now associated with one particular time instance.

Some examples of important design patterns for recurrent neural networks
include the following:

• Recurrent networks that produce an output at each time step and have

378

Such a recurrent network of with finite size can compute
any function computable by a Turing machine. Training???

Deep Learning
for NLP Gradient Clipping

2016-04-29Convolution & Recurrence 23

CHAPTER 10. SEQUENCE MODELING: RECURRENT AND RECURSIVE NETS



























Figure 10.17: Example of the effect of gradient clipping in a recurrent network with
two parameters w and b. Gradient clipping can make gradient descent perform more
reasonably in the vicinity of extremely steep cliffs. These steep cliffs commonly occur
in recurrent networks near where a recurrent network behaves approximately linearly.
The cliff is exponentially steep in the number of time steps because the weight matrix
is multiplied by itself once for each time step. (Left) Gradient descent without gradient
clipping overshoots the bottom of this small ravine, then receives a very large gradient
from the cliff face. The large gradient catastrophically propels the parameters outside the
axes of the plot. (Right) Gradient descent with gradient clipping has a more moderate
reaction to the cliff. While it does ascend the cliff face, the step size is restricted so that
it cannot be propelled away from steep region near the solution. Figure adapted with
permission from Pascanu 2013aet al. ().

A simple type of solution has been in use by practitioners for many years:

clipping the gradient. There are different instances of this idea (Mikolov 2012, ;

Pascanu 2013aet al.,). One option is to clip the parameter gradient from a

minibatch (element-wise Mikolov 2012,) just before the parameter update. Another

is to clip the norm || ||g of the gradient g (Pascanu 2013aet al.,) just before the

parameter update:

if || ||g > v (10.48)

g ←
gv

|| ||g
(10.49)

where v is the norm threshold and g is used to update parameters. Because the

gradient of all the parameters (including different groups of parameters, such as

weights and biases) is renormalized jointly with a single scaling factor, the latter

method has the advantage that it guarantees that each step is still in the gradient

direction, but experiments suggest that both forms work similarly. Although

416

