Qo'wers 1}19'-2

’ & Deep Learning
) g{ asmd for NLP

. &Q'am

Convolution

& Recurrence
April 29, 2016

Sebastian Stober <sstober@uni-potsdam.de>

*with figures from deeplearningbook.org

2
’ & Deep Learning
e asmpd for NLP

Convolution

Convolution & Recurrence 2016-04-29 2

Sparse Connectivity

Deep Learning
for NLP

A
g

° Q’am

A\NEIS;z.
N

g
S,

from above

z®®§®

from below
()

Q@ @

O,

convolution fully connected

3

2016-04-29

Convolution & Recurrence

A\NEIS;z.
N

" Deep Learning

-.g% 1T NI Receptive Field

° Q’am

oot

Convolution & Recurrence 2016-04-29

4

SoVersizy
’ & Deep Learning
e asmd for NLP

. ‘S:Q’am

't@:@o
convolution Gb ©
A

fully connected

Parameter Sharing

A\NEIS;z.
N

5 #2% Convolution & Pooling

. ?’é’m
1011, 0|0 -
ol1[1]1]o0] [4 S 1
B |
oxl. Oxol 1x; 1 1 g
0/|0|1|1(0 g
0O|1(1/0|0 =.
convolved < convolved pooled
2D input feature feature feature

[http://ufldl.stanford.eduwiki/i]

Convolution & Recurrence 2016-04-29 6

A\NEIS;z.
N

5, B Convolution & Pooling

. &Q’Qm

e convolution

— equivariance: if the input changes, the output
changes in the same way

» pooling
— approximate invariance to small translations

— trade-off: whether? vs. where?

— special case: maxout-pooling (pooling over
several filters => learn invariance)

Convolution & Recurrence 2016-04-29 7

f
& Deep Learning
3, asmd for NLP
&

Layer Structure

Complex layer terminology

Next layer

Simple layer terminology

I

Next layer

Convolutional Layer

Pooling stage

\

Pooling layer

Detector stage:
Nonlinearity
e.g., rectified linear

\

A

Detector layer: Nonlinearity
e.g., rectified linear

Convolution stage:
Affine transform

A

A

Convolution layer:
Affine transform

Convolution &

Input to layer

f

ecurrence

Input to layers

Complex vs. Simple

2016-04-29

8

-, @ CNN (simple layers)

INPUT feature maps feature maps feature maps feature maps OUTPUT
28x28 4@24x24 4@12x12 12@8x8 12@4x4 26@1x1

[Y. Bengio and Y. Lecun, 1995]

Convolution & Recurrence 2016-04-29 9

-, @5 CNN (complex layers)

S
y =
y =

classifier

. convolutional R
iInput * layer * * label

label minimize classification error

convolution 2x2 max-pooling
with 3x3 kernel with stride 1x1

* involves non-linear transform
0 \ (activation function) after conv.

 pool size controls amount of
invariance to input translations

* pool stride (step size) controls
non-linear sub-sampling

1
1
3
0
1

1
1
1
0

convolved pooled
feature feature

Convolution & Recurrence 2016-04-29 10

A\NEIS;z.
N

-, @25 To Pad or Not to Pad?

dm
[]
L]

see convolution mode
In Blocks:

044%
 samo e,
-+ ful Qé@§%60006662§%0

Q009 HOOOOOOOOOOOOOOLO®

0/0/0 oooooocxmb%o&

0% :c;%éoooooococ&%m&

g%booooooooo” O

Convolution & Recurrence 2016-04-29 11

A\NEIS;z.
N

-, @2 Down-Sampling/Stride

* reduces dimensionality

* stride > 1 for convolution
* down-sampling in combination with pooling

Convolution & Recurrence 2016-04-29 12

-
SIS,

-, @7 Strong Priors

dm
[]
L]

 CNN = "fully connected net with an infinitely
strong prior [on weights]”

* only useful when the assumptions made by
the prior are reasonably accurate

 convolution+pooling can cause underfitting

Convolution & Recurrence 2016-04-29 13

2
’ & Deep Learning
e asmpd for NLP

Recurrence

Convolution & Recurrence 2016-04-29 14

A\NEIS;z.
N

5 s Motivation

. &Q’Qm

* process sequential data
 capture history of inputs/states

* share parameters through a very deep
computational graph
— output is a function of the previous output

— produced using the same update rule applied to
the previous outputs.

* different from convolution across time steps

Convolution & Recurrence 2016-04-29 15

QOKVGTSI}Q((
Deep Learning

-, @ Cyclic Connections

. Q’Qm

* computational graph includes cycles
(recursion)

* represent influence of the present value of a
variable on its own value at future time steps

 unfolding to yield a graph that does not
involve recurrence

=> gets very deep very quickly

Convolution & Recurrence 2016-04-29 16

Qo'wers jfé_

5, @ Unfolding

S
* %m

[]
L]

oL RS¥erorers
olNcYoYe

1. regardless of the sequence length, the
learned model always has the same input
dimensionality

2. can use the same transition function f with
the same parameters at every time step

Convolution & Recurrence 2016-04-29 17

. @A@ ., Back-Propagation

for NLP

Through Time (BPTT)
i

 gradient computation for unfolded loss
function w.r.t parameters very expensive

* O(T)where T is history length
* no parallelization (sequential dependence)

Convolution & Recurrence 2016-04-29 18

A\NEIS;z.
N

-, @5 Dynamic System

* network now contains information about the
whole past sequence:
— Inputs,
— states,
— outputs

Convolution & Recurrence 2016-04-29 19

A\NEIS;z.
N

-, @2 Hidden State

dm
[]
L]

* h(t) as a kind of “lossy summary” of the task-
relevant aspects of the history up to t
— lossy compression necessary
— selectivity based on training criterion (cost)

* most demanding situation: rich enough
representation h(t) to allow approximate
recovery of input sequences (autoencoder)

Convolution & Recurrence 2016-04-29 20

-, @ Design Patterns

1. output at each time step,
recurrent connections between hidden units

2. output at each time step
recurrent connections only from output at
one time step to hidden units at next step

3. single output for entire input sequence,
recurrent connections between hidden units

Convolution & Recurrence 2016-04-29 21

A\NEIS;z.
N

a o Lame 1o OUtput at each time step,

. i
g{? -@ for NLP

F rec. conn. between hidden units

Such a recurrent network of Wlth finite size can compute

any function computable by a Turing machine. Training???
Convolution & Recurrence 2016-04-29 22

\30\\1 ers; fo

5 w2 Gradient Clipping

. Q’am

Without clipping With clipping

J(w,b)
J(w,b)

Convolution & Recurrence 2016-04-29 23

