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5 #2% Convolution & Pooling
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[http://ufldl.stanford.eduwiki/i]
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e convolution

— equivariance: if the input changes, the output
changes in the same way

» pooling
— approximate invariance to small translations

— trade-off: whether? vs. where?

— special case: maxout-pooling (pooling over
several filters => learn invariance)
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Layer Structure

Complex layer terminology

Next layer

Simple layer terminology
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Next layer

Convolutional Layer

Pooling stage
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Pooling layer

Detector stage:
Nonlinearity
e.g., rectified linear
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Detector layer: Nonlinearity
e.g., rectified linear

Convolution stage:
Affine transform
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Convolution layer:
Affine transform
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Input to layer

f

ecurrence

Input to layers

Complex vs. Simple

2016-04-29

8



-, @ CNN (simple layers)

INPUT feature maps feature maps  feature maps feature maps OUTPUT
28x28 4@24x24 4@12x12 12@8x8 12@4x4 26@1x1

[Y. Bengio and Y. Lecun, 1995]
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-, @5 CNN (complex layers)
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classifier

. convolutional R
iInput * layer * * label

label minimize classification error

convolution 2x2 max-pooling
with 3x3 kernel with stride 1x1

* involves non-linear transform
0 \ (activation function) after conv.

 pool size controls amount of
invariance to input translations

* pool stride (step size) controls
non-linear sub-sampling
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convolved pooled
feature feature
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see convolution mode
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-, @2 Down-Sampling/Stride

* reduces dimensionality

* stride > 1 for convolution
* down-sampling in combination with pooling
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 CNN = "fully connected net with an infinitely
strong prior [on weights]”

* only useful when the assumptions made by
the prior are reasonably accurate

 convolution+pooling can cause underfitting
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* process sequential data
 capture history of inputs/states

* share parameters through a very deep
computational graph
— output is a function of the previous output

— produced using the same update rule applied to
the previous outputs.

* different from convolution across time steps
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* computational graph includes cycles
(recursion)

* represent influence of the present value of a
variable on its own value at future time steps

 unfolding to yield a graph that does not
involve recurrence

=> gets very deep very quickly
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1. regardless of the sequence length, the
learned model always has the same input
dimensionality

2. can use the same transition function f with
the same parameters at every time step
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for NLP

Through Time (BPTT)
i

 gradient computation for unfolded loss
function w.r.t parameters very expensive

* O(T)where T is history length
* no parallelization (sequential dependence)
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-, @5 Dynamic System

* network now contains information about the
whole past sequence:
— Inputs,
— states,
— outputs
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* h(t) as a kind of “lossy summary” of the task-
relevant aspects of the history up to t
— lossy compression necessary
— selectivity based on training criterion (cost)

* most demanding situation: rich enough
representation h(t) to allow approximate
recovery of input sequences (autoencoder)
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-, @ Design Patterns

1. output at each time step,
recurrent connections between hidden units

2. output at each time step
recurrent connections only from output at
one time step to hidden units at next step

3. single output for entire input sequence,
recurrent connections between hidden units
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F rec. conn. between hidden units

Such a recurrent network of Wlth finite size can compute

any function computable by a Turing machine.  Training???
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Without clipping With clipping

J(w,b)
J(w,b)
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