

Convolution & Recurrence April 29, 2016

Sebastian Stober <sstober@uni-potsdam.de>

*with figures from deeplearningbook.org

Convolution

Convolution & Recurrence

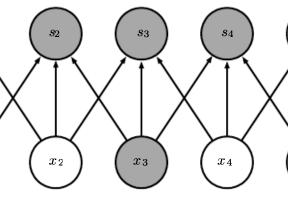
Sparse Connectivity

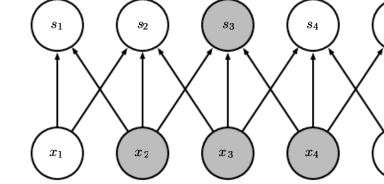
 s_5

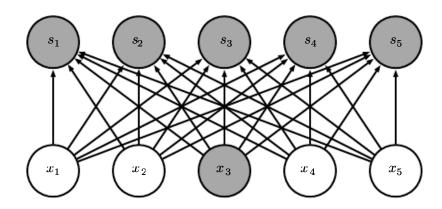
 x_5

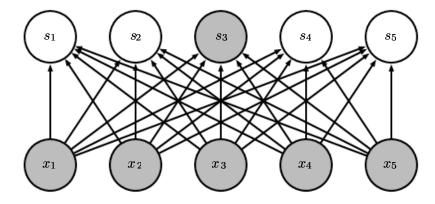
from below

from above









Universitäx

ro rsdam

convolution

fully connected

Deep Learning

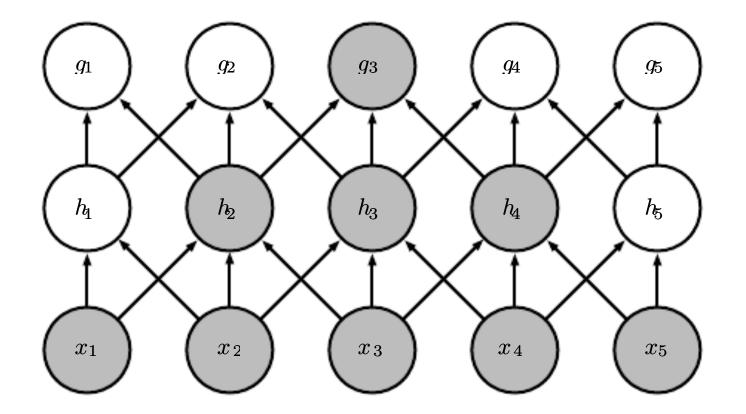
for NLP

 s_1

 x_1

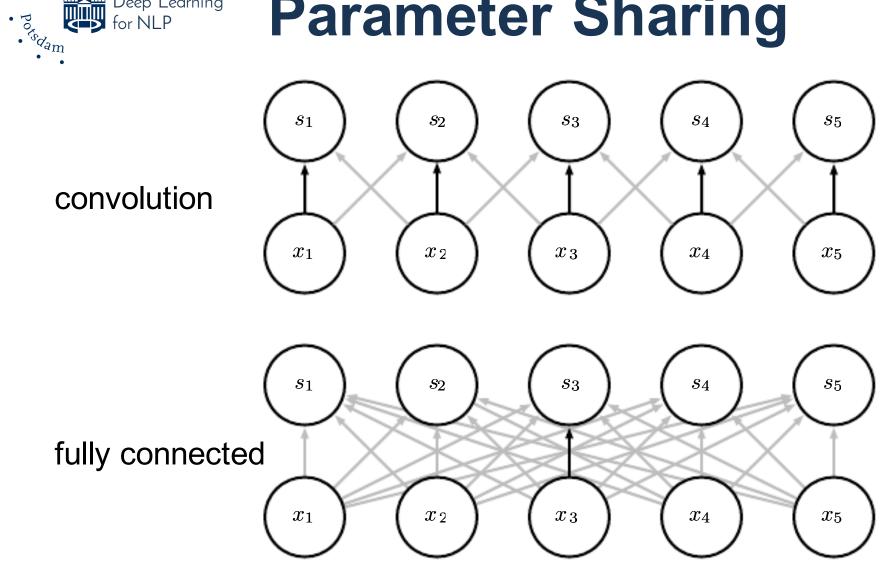
 s_5

 x_5



Convolution & Recurrence

Parameter Sharing

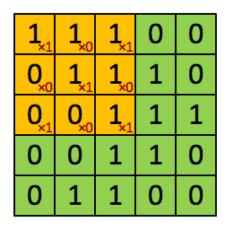


Universitäx

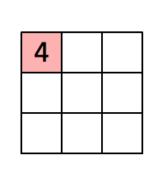
Deep Learning

for NLP

Convolution & Pooling



2D input



convolved

feature

non-linearity

pooled feature

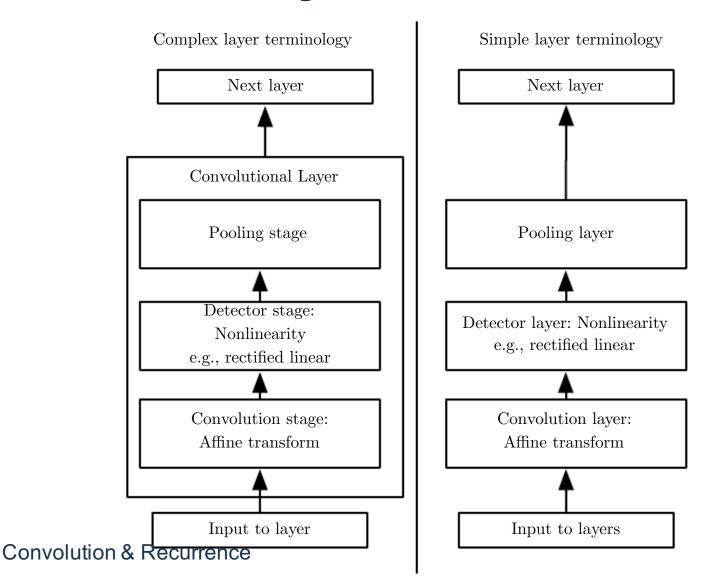
[http://ufldl.stanford.edu/wiki/i]

Convolution & Recurrence

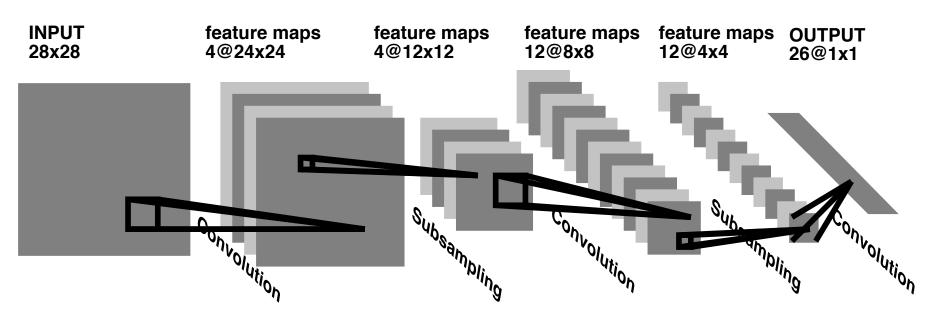
Convolution & Pooling

- convolution
 - equivariance: if the input changes, the output changes in the same way
- pooling
 - approximate invariance to small translations
 - trade-off: whether? vs. where?
 - special case: maxout-pooling (pooling over several filters => learn invariance)

Complex vs. Simple Layer Structure

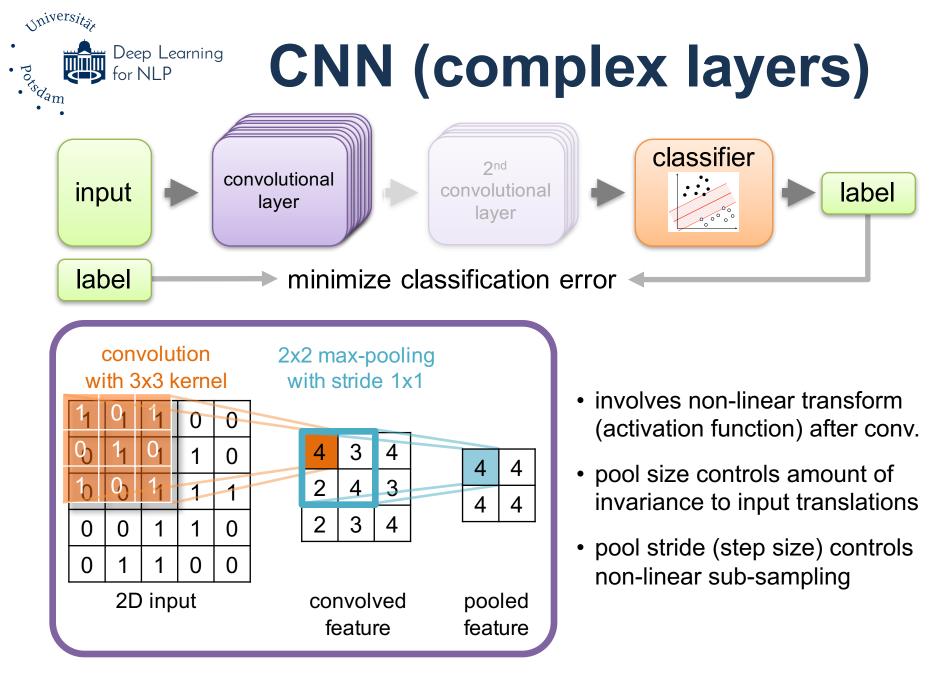


CNN (simple layers)



[Y. Bengio and Y. Lecun, 1995]

Convolution & Recurrence



Convolution & Recurrence

To Pad or Not to Pad?

see convolution mode in Blocks:

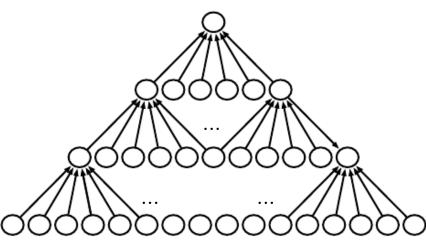
Deep Learning

valid

Universitäx

• Porsdam

- same
- full



Convolution & Recurrence

Down-Sampling/Stride

reduces dimensionality

- stride > 1 for convolution
- down-sampling in combination with pooling

Strong Priors

- CNN = "fully connected net with an infinitely strong prior [on weights]"
- only useful when the assumptions made by the prior are reasonably accurate

convolution+pooling can cause underfitting

Recurrence

Convolution & Recurrence

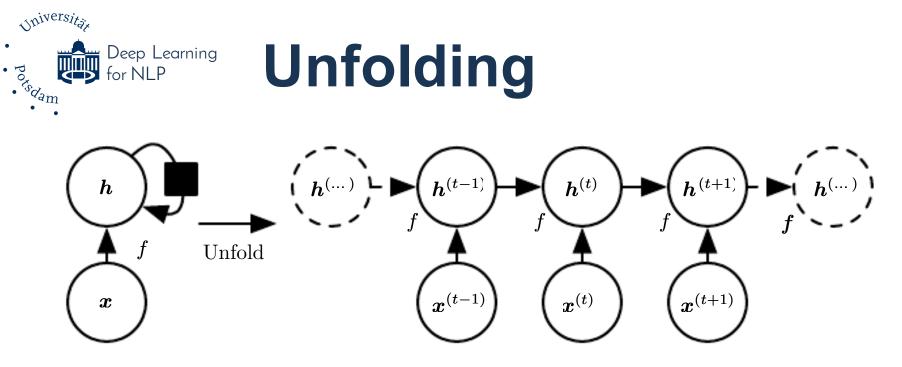
Motivation

- process sequential data
- capture history of inputs/states
- share parameters through a very deep computational graph
 - output is a function of the previous output
 - produced using the same update rule applied to the previous outputs.
- different from convolution across time steps

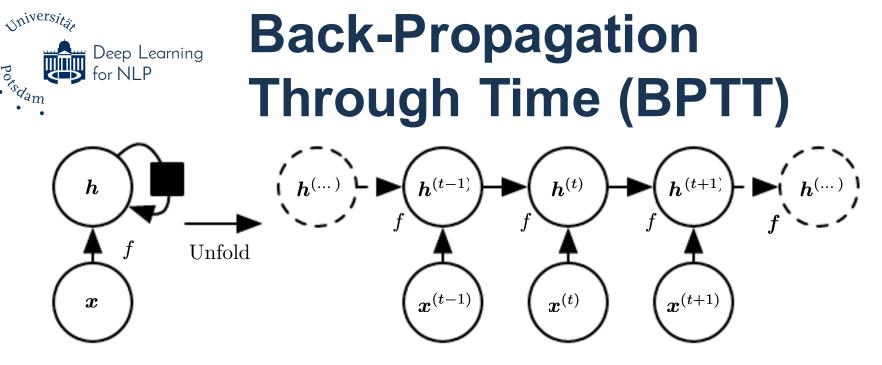
Cyclic Connections

- computational graph includes cycles (recursion)
- represent influence of the present value of a variable on its own value at future time steps

- unfolding to yield a graph that does not involve recurrence
 - => gets very deep very quickly



- regardless of the sequence length, the learned model always has the same input dimensionality
- 2. can use the same transition function f with the same parameters at every time step



- gradient computation for unfolded loss function w.r.t parameters very expensive
- O(T) where T is history length
- no parallelization (sequential dependence)

Dynamic System

- network now contains information about the whole past sequence:
 - inputs,
 - states,
 - outputs

Hidden State

- h(t) as a kind of "lossy summary" of the taskrelevant aspects of the history up to t
 - lossy compression necessary
 - selectivity based on training criterion (cost)

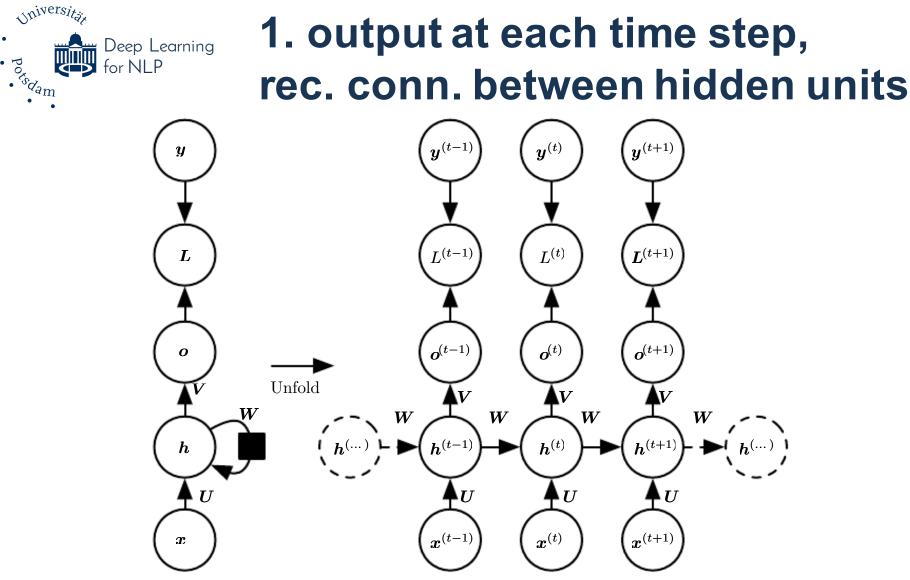
 most demanding situation: rich enough representation h(t) to allow approximate recovery of input sequences (autoencoder)

Design Patterns

- 1. output at each time step, recurrent connections between hidden units
- output at each time step recurrent connections only from output at one time step to hidden units at next step
- 3. single output for entire input sequence, recurrent connections between hidden units

Iniversi,

eep Learning



Such a recurrent network of with finite size can compute any function computable by a Turing machine. Training???

Convolution & Recurrence

Gradient Clipping

Without clipping

With clipping

