

Deep Learning Basics April 15, 2016

Sebastian Stober <sstober@uni-potsdam.de>

Additional Resources

- Deep Learning textbook:
 - <u>http://www.deeplearningbook.org/</u>
 An MIT Press book by Ian Goodfellow, Yoshua Bengio and Aaron Courville, 2016.
- standard ML textbooks:
 - Tom Mitchell: "Machine Learning", McGraw Hill, 1997.
 - Christopher M. Bishop: "Pattern Recognition and Machine Learning", Springer, 2007.

Additional Resources

- online lectures:
 - <u>https://www.coursera.org/course/neuralnets</u>
 Geoffrey Hinton: *"Neural Networks for Machine Learning"*, Coursera, 2012.
 - <u>http://cs224d.stanford.edu/</u>
 Richard Socher: "Deep Learning for Natural Language Processing</u>", Standford, 2015.
- generally useful:

- http://deeplearning.net/

Machine Learning Basics

Deep Learning Basics

Motivation

"lazy engineer" approach:

How to program a machine <u>to learn</u> to solve task XY?

generalizes to new / similar problems

Deep Learning Basics

• Learning:

- Improving with experience at some task

- Formal definition:
 - Improve over task T,
 - with respect to performance measure P,
 - based on experience E.

Machine Learning Tasks: Supervised vs. Unsupervised

Deep Learning Basics

Defining Learning

• Learning:

Improving with experience at some task

- Formal definition:
 - Improve over task T,

generalization on unseen (test) data

- with respect to performance measure P,
- based on experience E. training examples

Bias-Variance Trade-Off

- conflict: choose model that
 - accurately captures the training data regularities
 - generalizes well to unseen data
- bias
 - error from (implicit or explicit) assumption of the learning algorithm => underfitting
- variance
 - error from fitting to small fluctuations=> overfitting

Bias-Variance Trade-Off

• high bias, low variance:

• low bias, high variance:

• good trade-off:

Deep Learning Basics

Under-vs. Overfitting

How to improve generalization performance?

- underfitting: more training or increase model *capacity*
- overfitting: less training or decrease model *capacity*

Deep Learning Basics

Universit

Deep Learning

or NLP

decide when to stop based on validation set

Deep Learning Basics

Model Capacity

- intuitive definition: model's ability to fit
- statistical learning theory: VC dimension
- optimal performance when model capacity appropriate for task complexity
 - higher-capacity models can solve harder tasks but are more prone to overfitting
- <u>effective capacity</u> may be reduced by limits of the learning algorithm => in deep learning

Hyper-Parameters

- set <u>before</u> training starts
- typical roles:
 - determine (representational) model capacity, including regularization params
 - control training algorithm (effective capacity)

 important: Never use the test set to tune hyper-parameters!

From Machine Learning to Deep Learning

Deep Learning Basics

Typical Machine Learning Workflow (for Classification)

make use of domain knowledge from experts

train with labeled data (supervised)

Typical Deep Learning Workflow (for Classification)

make use of abundant data and (GPU) compute power

Deep Learning Basics

The Promise of Deep Learning

learn suitable <u>feature representations</u>
 along with the actual learning task

• using a <u>general-purpose</u> learning procedure

An Example Deep Net

Deep Learning Basics

Universitäx

Porsdam

Deep Learning

for NLP

[Mitchell 1997]

1 + e

ı -net

net activation

 $net = \sum_{i=0}^{n} w_i x_i$

(output) activation

 $o = \sigma(net) =$

Deep Learning Basics

 w_n

connection

weights

 x_n

inputs

Common Activation Functions

Deep Learning Basics

Single Neuron Capacity

Deep Learning Basics

Universita

Deep Learning

for NLP

Deep Learning Basics

- with enough hidden units
 => arbitrarily complex but smooth functions
- but: may become infeasibly large! => go deeper!

Softmax (Output) Layer "softargmax"

- used for multi-class classification
 - 1 output neuron per class
 - (optional) linear transform: $z = W^Tx+b$
 - interpret z as unnormalized conditional log probabilities given input x, i.e. z_i = log P'(y=i | x)

$$\operatorname{softmax}(\boldsymbol{z})_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)} \operatorname{normalization}_{(\operatorname{sum} = 1)}$$

 predict class with highest probability (winner-take-all principle)

Deep Learning Basics

How could a real softmax be obtained?
 (I.e. a soft version of the max function)

goal: maximize log likelihood of target class i
 i.e. maximize log(P(y=i | z)) = softmax(z)_i

$$\log \operatorname{softmax}(\boldsymbol{z})_i = z_i - \log \sum_j \exp(z_j)$$

 convert into a loss function: minimize negative log likelihood (NLL)

(also referred to as "Cross Entropy")

Error Backpropagation

for each training example (x,y), input layer compute partial derivatives of loss function w.r.t. every single network parameter (W,b) hidden layer $h = act_1(W_1^Tx + b_1)$ output layer $o = act_2(W_2^Th + b_2)$ input **prediction** = $\operatorname{argmax}(o)$ labe => loss function error

Deep Learning Basics

Universita

· Porsdan,

Deep Learning

Computation Graph

31

Deep Learning Basics

Universita;

Deep Learning

for NLP

Gradient Descent

Universita

Deep Learning

for NLP

³²

Gradient Descent

a more realistic error function (for 2 weights)

=> can get stuck in local minima!

Deep Learning Basics

Universita

örsdamı

Deep Learning

or NLP

Gradient Descent

- for all training examples (batch training)
 - can take very long
 - possible aggregation effects
- for each training example (online training)
 less chance of getting stuck in local minima
 can be very "jumpy"
- good trade-off: minibatch training

Deep Net Training Building Blocks

Deep Learning Basics

- features (network inputs)
 - topology (flat, structured, …)
 - variable length?
- targets (desired network outputs)
 encoding (one-hot, plain labels, structured, ...)
- optional meta-data

Datasets (2)

- partitioning
 - training set : train model
 - validation set : choose hyper-parameters
 - test set : estimate generalization performance
- normalization
- storage
 - in memory (on GPU?), DB
 - generated on-the-fly

Model Structure

- hidden layer types and dimensions

 e.g. fully connected, convolutional, recurrent
- biases?
- activation functions
- output layer (e.g. softmax, linear, ...)

Model Initialization

- general rule of thumb:
 - start with linear model behavior
- constant, identity
- random (uniform, Gaussian, ...)
- sparse
- orthogonal

Why is simply setting everything to 0 a bad idea?

- pre-trained
- model domain knowledge

Cost Function also: objective or loss function

- measures model quality
 - How much has it improved / learned?
 - How well does it generalize?
- very common choices:
 - cross entropy (supervised training)
 - reconstruction error (unsupervised training)

early stopping

Universit.

- weight regularization / "weight decay"
 - L1 = penalize non-zero values
 - L2 = penalize extreme weights
- sparse activation
- Dropout = randomly set activations to zero
 separate effects from correlated features
- DropConnect = randomly set weights to zero

Training Algorithm

- (full) batch gradient descent
 update after seeing all examples (= 1 epoch)
- stochastic gradient descent (SGD)
 update after each example
- minibatch SGD

Deep Learning

- update after each batch of examples
- second-order methods
 Hessian-free optimization

Universita

Learning Rule

- scale
- Momentum
- AdaDelta
- AdaGrad
- RMSProp
- Adam

Termination Criterion

- fixed number of epochs
- fixed maximum runtime
- monitoring-based
 - weights change below threshold
 - training error
 - early stopping (validation error)
- combinations

Training Extensions

- monitoring
 - errors
 - gradients
 - weights
- plotting
- parameter adjustments
- save model

- keep track of best model so far